

NAVIKA-100 Technical Document

Contents

0				

- □ Block Diagram
- ☐ Specifications of NAVIKA-100
- □ Pin Diagram
- ☐ Pin Description
- Mechanical Details
- Operating conditions
- ☐ Application circuit recommendations
- □ Solder paste details
- □ Reflow Temperature profile
- □ Ordering Information

Overview

NAVIKA-100 is a L1, C/A code based GPS-SBAS receiver module with a form-factor of 25.4mm x 25.4mm. NAVIKA-100 has high performance correlator for ultra low signal detection and tracking. NAVIKA-100 supports NMEA-0183 message protocol to communicate the location information. In addition, Navika proprietary messages convey additional information for a tighter integration with the end application.

NAVIKA-100 (25.4mm x 25.4mm)

Block Diagram

NAVIKA-100 Block Diagram

- ☐ AST-230 is a high performance GPS baseband with an ARM7 processing core and integrated peripherals.
- □ AST-GPSRF is a high performance, fully integrated GPS RF front-end chip for down conversion and signal amplification. It is designed for GPS L1 (1575.42MHz), C/A and Galileo OS (1575.42MHz) receivers.

Specifications of NAVIKA-100 Module

Performance Characteristics

Receiver :32 channels L1-C/A code GPS-

SBAS

Sensitivity

Acquisition :-155dBm (Hot start, 1SV @

-140dBm)

-160dBm (Reacquisition)

Tracking :-163dBm

Time to First Fix

Hot Start (with valid ephemeris, almanac, position and time

position and time

estimate) :2-3 sec (typical) switch OFF/ON

cycle less than 1 hour

Warm Start(with

almanac, position

and time estimate) :30 sec (typical)

Cold Start (without almanac, time, or

position) :35 sec (typical)

Note: Active antenna kept under open sky with HDOP<2 and C/NO

> 40dB-Hz

Accuracy

Position (Horizontal) :<2.5 m (RMS)

Velocity :0.1 m/sec (90% without S/A)

Note: Active antenna kept under open sky with HDOP<2 and C/N0

> 40dB-Hz

Reacquisition

 $\begin{array}{ll} \text{Signal} & :< 1 \text{ sec} \\ \text{Position} & :< 1 \text{ sec} \end{array}$

Blockage Time :3 minutes

Navigation Solution

PVT :2D/3D position, velocity, and

time 183 geodetic datum

supported (default) (WGS84)

Position Update Rate :1 Hz

Timing

1PPS : < +/- 10ns, RMS without

errors

Pulse Width : 386us (adjustable between

386us to 500ms in steps of

386us)

Pulse Edge : Rising (configurable)

Pulse Delay : Ons (adjustable between

-999 to +999ns)

PC/Host Communication

Interface :UART

Baud Rate :115200 (by default)

Message Formats :NMEA0183 Ver. 3.01 ASCII

as well as proprietary

Messages

Environmental Characteristics

Operational

Temperature Range

(Ambient) :- 40° C to $+85^{\circ}$ C

Storage Temperature

Range :-40°C to +85°C Humidity :95% non-condensing

+30°C to 60°C

Altitude :18,000 meters

Electrical Characteristics

Total Current

Consumption :85mA @ 3.3V

Output Messages

NMEA :\$GPGGA, \$GPGSA, \$GPRMC,

\$GPGLL, \$GPGSV, \$GPVTG,

\$GPZDA

ASCII :Version, Receiver

Configuration, Antenna Status,

PPS mode

Input Messages

ASCII :NMEA message control and

Configuration, Elevation Mask, DOP settings, Factory reset, Restart, 1PPS configuration

Pin Diagram

Pin Description

Pin number	NAME	I/O	Description		
1	GND		Ground		
2	VBAT 1V2	I	Back-up voltage supply		
3	USB_VCC	I	USB supply		
4	USB_DM	I/O	USB Data -		
5	USB_DP	I/O	USB Data +		
6	UART1_RXD	I	Serial Port		
7	UART2_RXD	I	Serial Port		
8	TWI_SDA	I/O	TWI Data		
9	TWI SCL	0	TWI Clock		
10	DVCC-3V3	I	Supply voltage		
11	GND		Ground		
12	UART1_TXD	0	Serial port		
13	UART2 TXD	0	Serial port		
14	GPIO_3	I/O, I by default	Reserved		
15	GPIO_4	I/O, I by default	Reserved		
16	PTTI	0	Time pulse (IPPS)		
17	RESET_N	I	External Reset		
18	GPIO_2	I/O, I by default	Reserved		
19	GPIO_8	I/O, I by default	Reserved		
20	GND		Ground		
21	RF_IN	I	GPS signal input		
22	ANT_SENSE	I	Active antenna detect		
23	GND		Ground		
24	ANT_VCC	I	Active antenna detect		
25	GPIO_14	I/O, I by default	Reserved		
26	GPIO_15	I/O, I by default	Reserved		
27	SPI_MISO	I	SPI MISO		
28	SPI_MOSI	0	SPI MOSI		
29	SPI_CLK	0	SPI clock		
30	SPI CS	I	SPI chip select		

Mechanical details

Length = 25.4 mmWidth = 25.4 mmHeight = 3.74 mmPad Pitch = 2.54 mmPad Width = 1.27 mm

Operating conditions

Parameter	Symbol	Min.	Тур.	Max	Units
Power supply voltage	DVCC_3V3	3.14	3.3	3.47	Volts
Supply voltage USB	USB VCC	3.0	3.3	3.6	Volts
Backup battery voltage	VBAT_1V2	1.08	1.2	1.32	Volts
Antenna gain	Gain		28	50	dB
Operating temperature	Temp	-40		+85	°C

Application Circuit Recommendations

Recommendations

In order to build a complete GPS receiver using the module, all it takes are a few connections. The diagram below depicts the interconnections to be done in order to use the NAVIKA-100.

- ☐ Connect a 50 Ohm trace between the RF_IN pad and the antenna connector
- ☐ Connect a 20, 1W resistor between the ANT_SENSE and ANT_VCC_3V pads. This is required to sense a short circuit on the antenna power line as well as to protect the power-ground short circuit
- ☐ An active low power ON reset of at least 25ms should be provided on the /RESET pad
- ☐ The host communication can be tapped at the UART1_RXD and UART1_TXD lines
- ☐ Mains power of 3.3V +/- 5% should be applied at DVCC_3V3 pad. The maximum current draw of the board would be about 85mA (excluding antenna current). It is recommended to mount a decoupling capacitor of 1uF close to the DVCC 3V3 pad
- ☐ A backup battery of 1.2V should be applied at VBAT_1V2 pad. The recharge circuitry (in case of a rechargeable battery) should be provisioned on the motherboard

Solder paste details

Below is the information on Solder paste details

Make : AMTECH or similar

Type : 3

Profile : Normally available with supplier. Also dependent on the PCB finish. The Navika-100 is finished with

ENIG.

Reflow - Temperature profile

Ordering Information

Navika-100 : GPS application module

Navika-100-Eval: Evaluation board of Navika-100 Contains Navika-100 module mounted on an evaluation PCB and

packaged into a plastic enclosure, USB cable, active GPS antenna and GUI installation CD

